MECHANISMS OF CORROSION

- Thermodynamics of Corrosion
 - Pourbaix Diagram
 - The Electrode Potential
 - The Electromotive Force Series
 The Nernst Equation
 Common Reference Electrodes
 Effect of Temperature on Reference Electrode Potentials
 Converting Measured Potentials between Reference Electrodes
 - The Corrosion Cell
 - Corrosion Cell Components Corrosion Cell Kinetics (Polarization)
 - o Faraday's Law
 - o Corrosion Potential
 - o Factors Affecting the Operation of a Corrosion Cell
 - Depolarization of a Corrosion Cell Increased Polarization of a Corrosion Cell Circuit Resistance Changes
 Effect of Driving Voltage on a Corrosion Cell
 Effect of Time on a Corrosion Cell
 Randles Circuit Model for an Electrode Interface in a Corrosion Cell
 Types of Corrosion

CATHODIC PROTECTION THEORY

- Definition
- Criteria
 - Potential Criterion (-850 mVcse)
 - o Polarization Shift Criterion (100 mV)
 - o Factors affecting validity of criteria
 - Temperature Sulphate reducing bacteria AC Current density Type of metal Mixed metals
 Stress Corrosion Cracking (SCC)
 - Typical Cathodic Polarization Characteristics
- Cathodic Polarization Curve
- Activation and Concentration Polarization
- Factors Affecting Polarization
 - o Aeration
 - o Agitation (velocity)
 - o Temperature
 - o pH
 - o Surface Area
 - o Effect of Time
- Types of Cathodic Protection Systems
 - o Galvanic Anodes
 - Aluminum Anodes Magnesium Anodes Zinc Anodes Polarization Diagram Backfill Typical uses
 - Impressed current anodes
 - Bulk Anodes

Dimensionally Stable Anodes Polarization Diagram Carbon Backfill Typical Uses Impressed Current Power Supplies

ELECTRICAL INTERFERENCE

- Detecting Stray Current
 - o Effects of Stray Current on Metallic Structures
 - o Mitigation of Interference Effects from Impressed Current Cathodic Protection Systems
 - Other Sources of DC Stray Current
- AC Interference
 - o Conductive Coupling Due to Faults
 - Electrostatic Coupling
 - Electromagnetic (Inductive Coupling)
- Telluric Current Interference
 - o Interference Effects
 - o Mitigation of Telluric Current Effects

CP DESIGN FUNDAMENTALS

- Design Objectives
- Determining Current requirement
- Current Requirement Estimating Methods
 - Minimum Voltage Drop Method
 - Polarization Test Method
 - Polarization Shift Method
- Calculation of Cathodic Protection Circuit Resistances
 - o Anode Resistance
 - Calculating Pipe Resistance to Remote Earth
 - Calculation of Cable and Pipe Lineal Resistances
- Calculating System Capacity and Life
- Calculation of System Life
- Calculating Number of Anodes
- Calculation of System Driving Voltage
 - o Galvanic System
 - o Impressed Current System
- Sample Cathodic Protection Designs
 - o Galvanic System
 - o Impressed Current System
- Design of Performance Monitoring Facilities
 - o Typical Test Station
 - o Test Arrangement at an Pipeline Crossing
 - o Test Arrangement at an Underground Isolating Fitting
 - o Test Arrangement at a Galvanic Anode
 - o Test Arrangement at a Casing
 - o Test Lead Arrangement at a Current Span Test Station
 - Coupon Test Stations
- Current Distribution
 - \circ Attenuation
 - o Effect of Coating on Current Distribution
 - o Effect of Anode-to-Structure Spacing on Current Distribution
 - o Effect of Structure Arrangement on Current Distribution
 - $\circ~\mbox{Effect}$ of Electrolyte Resistivity Variation on Current Distribution
 - $\circ~$ Effect of Current Distribution on Holidays on a Coated Structure

EVALUATION OF CP SYSTEM PERFORMANCE

- The Potential Measurement
 - o Copper Copper Sulfate Reference Electrode
 - $\circ~$ Buried Reference Electrode
 - $\circ~$ Polarity Considerations
 - o The Potential Measurement Circuit and Measurement Error
- Voltage Drop Errors in the Metering Circuit
- Methods of Minimizing Voltage Drop Errors in the Potential Measurement
 - Current Interruption Method
 - o Step-wise Current Reduction Method for Determining the Amount of Soil IR Drop in the On-Potential
 - o Reference Electrode Placement Close to the Structure
 - o Using Coupons to Minimize Voltage Drop Errors in the Potential Measurement
- Measurement of the Polarization Shift
- Current Measurement
 - o Using an Ammeter to Measure Current
 - o Using a Shunt to Determine Magnitude
 - o Zero Resistance Ammeter
 - o Clamp-on Ammeter
 - o Pipeline Current Measurements
- Close Interval Potential Survey
- Coating Condition Surveys
 - o Voltage Gradient Method of Detecting Holidays in a Pipe Coating
 - o Coating Conductance Method of Evaluating Coating Quality
- Troubleshooting Cathodic Protection Systems
 - Polarization Changes
 - Anode Polarization
 - o Increased Resistance
 - Power Supply Change